Геометрическая оптика Фотоэлектрический эффект Ядерные реакции Волновые свойства Квантовая механика Электромагнитное поле Задачник по ядерной физике Квантовая физика Электростатика Электрические машины Электромагнетизм Комплексный чертеж

Инвариантность относительно преобразований Галилея

 Галилей еще в XVII в. сформулировал принцип относительности в механике, или механический принцип относительности.

 Механический принцип относительности. Механические явления во всех инерциальных системах отсчета происходят совершенно одинаково. Нельзя с помощью механических экспериментов, производимых в движущейся инерциальной системе отсчета, определить скорость ее движения (если не производить наблюдений тел из системы отсчета, относительно которой мы хотим определить скорость движения).

Покажем, что уравнения механики математически записываются совершенно одинаково во всех инерциальных системах отсчета. Для простоты рассмотрим движение материальной точки, т.е. тела, размерами которого можно пренебречь в рассматриваемой ситуации. Пусть это движение описывается в двух каких-нибудь инерциальных системах - в “покоящейся” системе K и в “движущейся” системе K'. Пусть в начальный момент времени декартовы оси этих систем совпадали и пусть система K движется вдоль оси x с постоянной скоростью v.

 Координаты точки M, отсчитываемые относительно движущейся и относительно покоящейся систем отсчета K и K' связаны следующими формулами преобразования:

которые называют формулами преобразования Галилея. Время при преобразованиях Галилея никак не преобразуем, так что следует положить, что .

Эту формулу тоже будем относить к формулам преобразования Галилея.

 Рассмотрим движение материальной точки M массы m относительно той и другой систем, происходящее, к примеру, вдоль оси x, под действием некоторой заданной силы F (действующей только вдоль оси x). Тогда в системах K и K' имеем следующие уравнения движения:  

которые математически совершенно одинаковы (инвариантны). При этом одно уравнение получается из другого с помощью преобразований Галилея. Действительно, согласно этим преобразованиям:

так как очевидно dv/dt = 0 (скорость v постоянна).

 Самыми фундаментальными объектами в физике являются точки и волны. Поэтому интересно посмотреть, а будет ли инвариантно относительно преобразований Галилея волновое уравнение, скажем, для простоты, одномерное волновое уравнение (уравнение Даламбера) для плоских волн, распространяющихся вдоль оси x. Пусть u = u(x,t) - волновая функция и c - скорость волны. Тогда имеем уравнение

Совершим в нем преобразование Галилея, другими словами - перейдем от независимых переменных x,t к переменным x',t', считая, что неизвестная волновая функция u теперь выражена в переменных x',t', т.е.

где 

Таким образом,

Следовательно,

Далее,

Следовательно,

Подставим полученные выражения для вторых производных в исходное волновое уравнение. Тогда получим, что

или

Как видим, получили совсем не Даламбера, а другое уравнение (в которое входит v).

 

Эта глубокая связь между гравитацией и ускоренным движением, несомненно, представляет собой блестящую догадку, но почему она сделала Эйнштейна столь счастливым? Причина, попросту говоря, состоит в том, что гравитация — загадочное явление. Это грандиозная сила, пронизывающая жизнь космоса, но она ускользающе непонятна. С другой стороны, ускоренное движение, хотя и является несколько более сложным, чем равномерное, является конкретным и вполне материальным.

Физика, математика лекции учебники курсовые студенту и школьнику