Интерфенция света примеры решения задач

Пример 1. На диафрагму с круглым отверстием радиусом r=1 мм падает нормально параллельный пучок света длиной волны λ=0,05 мкм. На пути лучей, прошедших через отверстие, помещают экран. Определить максимальное расстояние bmax от центра от­верстия до экрана, при котором в центре дифракционной картины еще будет наблюдаться темное пятно.

Решение. Расстояние, при котором будет видно темное пят­но, определяется числом зон Фре­неля, укладывающихся в отвер­стии. Если число зон четное, то в центре дифракционной картины бу­дет темное пятно.

Действие магнитного поля на движущийся заряд

Число зон Френеля, помещаю­щихся в отверстии, убывает по мере удаления экрана от отверстия. Наименьшее четное число зон равно двум. Следовательно, максимальное расстояние, при котором еще будет наблюдаться темное пятно в центре экрана, определяется условием, согласно которому в отверстии должны поместиться две зоны Френеля.

Из рис. 31.1 следует, что расстояние от точки наблюдения O на экране до края отверстия на 2 (λ/2) больше, чем расстояние bmax.

По теореме Пифагора получим

.

Учтя, что λ<<bmах и что членом, содержащим λ2, можно пренеб­речь, последнее равенство перепишем в виде При подъеме с помощью гидравлического пресса груза массой 2 т была совершена работа 4,9 кДж. Найдите число ходов малого поршня, перемещающегося за один ход на 10 см, если КПД пресса 90%, а площадь большого поршня больше малого в 100 раз. Принять g = 9,8 м/с2. Ответ представьте в единицах СИ.

r2=2λbmax. откуда bmax=r2/(2λ). Произведя вычисления по последней формуле, найдем

bmax=1 м.

Второе уравнение Максвелла. В силу общности теоремы Гаусса применительно к любым векторным полям и отсутствия в природе «магнитных зарядов» (о чем уже говорилось ранее), второе уравнение Максвелла в интегральной форме совпадает с теоремой Гаусса для магнитной индукции: Интегрирование производится по произвольной замкнутой поверхности S. Геометрическая оптика изучает законы распространения света в прозрачных средах, основываясь на представлении о световых лучах. Под световым лучом понимают линию, указывающую направление распространения световой энергии. С помощью световых лучей легко объясняются законы геометрической оптики: прямолинейного распространения света, его отражения и преломления. Как показывают наблюдения, в однородной среде свет распространяется прямолинейно. Прямолинейным распространением света объясняется образование теней, т. е. областей, в которые не поступает световая энергия. Тень наблюдается в том случае, когда линейными размерами источника можно пренебречь по сравнению с расстояниями, рассматриваемыми в данной задаче.


Физика, математика лекции учебники курсовые студенту и школьнику