Сечение многогранников плоскостью Построение линии пересечения поверхностей Курсовая работа Архитектура Зимнего дварца

Комплексный чертеж на примере изображения точки

Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений

 В начертательной геометрии и в черчении для построения изображений в основном используется один из методов проецирования. Когда направление взгляда наблюдателя перпендикулярно к плоскости проекций, относительно которой сам наблюдатель условно находится на бесконечно удаленном расстоянии (Рис.3). Проецирующий луч  от глаза наблюдателя   проходит через точку  какой-либо фигуры в пространстве и пересекает плоскость проекций , образуя ортогональную (прямоугольную) проекцию . (Символически: ).

 Однако  – еще не чертеж. Чертеж должен читаться однозначно, то есть должен быть обратимым. В данном случае проекции  может соответствовать не только точка , но и любая точка , принадлежащая проецирующему лучу l. В итоге: , но .

 Способ получения обратимых изображений был предложен создателем начертательной геометрии как науки Гаспаром Монжем (1746-1818). Для этого оказалось достаточно: предмет спроецировать одновременно на две плоскости проекций. Например, - на две взаимно перпендикулярные плоскости: – горизонтальную и  – фронтальную плоскости проекций (Рис.4). В этом случае на лицо обратимость  и .

 

 Для усиления наглядности изображений и для решения многих геометрических задач часто приходится проецировать предмет на три плоскости: , и . Последняя из них – профильная плоскость проекций (Рис.5). Линии пересечения плоскостей проекций называются осями проекций. На этих осях происходит излом линий связи между отдельными проекциями точек. Звенья ломаных линий отражают расстояния точки в пространстве до соответствующих плоскостей проекций. Если оси проекций совместить с осями ортогональной системы координат , то эти расстояния примут свои численные значения. (Рис.4 и 5).

 Плоскости проекций делят пространство на 4 квадранта плоскостями  и  и на 8 октантов – тремя плоскостями (Рис.4 и 5). От положения точки в той или иной части пространства зависят знаки её координат. Например, в I-м квадранте (Рис.4) все координаты положительны, во 2-м – координата  уже отрицательна.

 Что касается положения наблюдателя относительно плоскостей проекций: место наблюдателя или в 1-м квадранте или в 1-м октанте.

 Пока мы получили только пространственные модели обратимых комплексных изображений на двух и на трех плоскостях проекций.

Для тех, кто решил получить высшее образование, совершенно необходимо усвоить основной язык общения на производстве. Это язык инженерной графики. Теория изображения пространственных геометрических фигур на плоскости и практика выполнения технических чертежей излагаются в курсах начертательной геометрии и машиностроительного черчения.

Длина изображения отрезка, параллельного плоскости проекций, равна длине самого отрезка

Комплексный чертеж точки

Законы проекционной связи на комплексном чертеже На комплексном чертеже – произвольная точка . Задать точку   правее точки  на 20 мм, ближе ее на 10 мм и выше – на 15 мм. На линии связи  отметить разницу  и через полученную точку под прямым углом провести линию связи для последующего построения на ней проекций и .

Основные геометрические фигуры Способы задания геометрических фигур. Два способа задания геометрических фигур: кинематический и статический. Кинематический способ основан на перемещении в пространстве точки или образующей линии по определенному закону. Закон перемещения задается направляющими элементами: точками, линиями или плоскостями. Совокупность образующей и направляющих называется определителем геометрической фигуры.


Частный случай теоремы Г.Монжа